پیش بینی جریان روزانه رودخانه نوران چای با استفاده از مدل ترکیبی شبکه های عصبی مصنوعی- تجزیه مؤلفه های اصلی
Authors
abstract
پیشبینی دقیق جریان روزانه، نقش بهسزایی در مدیریت کارآمد منابع آب ایفا میکند. به این منظور در این تحقیق سعی شده است که جهت مدلسازی هرچه دقیقتر فرآیند پیش بینی جریان روزانه رودخانه نورانچای واقع در حوضه آتشگاه، از شبکههای عصبی مصنوعی (ann) استفاده گردد. همچنین به منظور افزایش کارآیی ann از تجزیه مؤلفه های اصلی (pca) جهت پیش پردازش دادههای ورودی استفاده گردیده و درنهایت دادههای خروجی حاصل، با نتایج مدل رگرسیون خطی چند متغیره (mlr) مقایسه شده است. نتایج نشان داد که مدل ترکیبی ann-pca در قیاس با مدل ann منفرد و mlr از دقت بسیار بالایی برخوردار است. بهطوریکه نتایج معیارهای ارزیابی شامل ضریب همبستگی (cc)، ضریب راندمان (ec) و جذر میانگین مربعات خطاها (rmse) برای مدل ترکیبی ann-pca (در مرحله صحتسنجی) برابر 9959/0=cc، 9905/0=ec و 0071/0=rmse، مدل ann منفرد (در مرحله صحتسنجی) برابر 9093/0=cc، 8269/0=ec و 0405/0=rmse و مدل mlr برابر 8866/0=cc، 7860/0=ec و 0926/0=rmse به دست آمدند. همچنین استفاده از pca به عنوان یک روش مؤثر جهت پیش پردازش دادهها، با ایجاد مؤلفه های مستقل از هم موجب از بین رفتن هم خطی چندگانه میشود. بنابراین pca موجب افزایش کارآیی مدل ann میگردد.
similar resources
پیشبینی جریان روزانه رودخانه نوران چای با استفاده از مدل ترکیبی شبکههای عصبی مصنوعی- تجزیه مؤلفههای اصلی
پیشبینی دقیق جریان روزانه، نقش بهسزایی در مدیریت کارآمد منابع آب ایفا میکند. به این منظور در این تحقیق سعی شده است که جهت مدلسازی هرچه دقیقتر فرآیند پیشبینی جریان روزانه رودخانه نورانچای واقع در حوضه آتشگاه، از شبکههای عصبی مصنوعی (ANN) استفاده گردد. همچنین بهمنظور افزایش کارآیی ANN از تجزیه مؤلفههای اصلی (PCA) جهت پیشپردازش دادههای ورودی استفاده گردیده و درنهایت دادههای خروجی حا...
full textپیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گرد...
full textمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textپیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
full textپیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی
در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...
full textتحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه
پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب میگردند، همواره با مشکلاتی همراه بوده است. یکی از روشهایی که میتواند این مشکل را تا حدی کاهش دهد، تحلیل عدم قطعیت پیشبینیهای انجام شده میباشد. این تحلیلها در مدلهای آماری سابقه طولانی دارند، ولی برای مدلهای شبکه عصبی و نروفازی کمتر مورد استفاده قرا...
full textMy Resources
Save resource for easier access later
Journal title:
دانش آب و خاکPublisher: دانشگاه تبریز
ISSN 2008-5133
volume 25
issue 3 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023